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Turbulent motions within the wind-mixed layer, which is advected by near-surface 
inertial oscillations, excite internal gravity waves in the underlying ocean layers. 
Momentum transport in the radiated wave field results in a drag force on the inertial 
currents. Because the magnitude of the inertial currents is large compared with the 
turbulence intensity, the resultant rate of dissipation of inertial oscillation energy is 
approximately equal to  the energy flux in the radiated wave field. Using linear internal 
wave theory, asymptotic results are derived for the energy flux in terms of the Brunt- 
VaisLla frequency N below the mixed layer, the magnitude Uo of the inertial current, 
the integral length scale 1 of the mixed-layer turbulence and the mean-square displace- 
ment (5;) of the base of the mixed layer. For representative conditions, we estimate an 
energy flux of 1-10 erg/cm2 s into relatively short (wavelength of order 27rUJN) high 
frequency (of order, but less than, N )  internal waves. The resultant decay times for 
inertial oscillation energy range from a day to  a week or SO, in agreement with reported 
observations on the decay of inertial oscillations in the upper ocean. The estimated 
energy flux is comparable in magnitude to  estimates for other internal wave generation 
mechanisms, indicating that, in addition to  being a significant sink of inertial energy, 
this process may locally represent a significant source of internal wave energy in the 
open ocean. 

1. Introduction 
Inertial oscillations, i.e. rotary currents with frequency close to the local inertial 

frequency f (at latitude A, the inertial period 2n/f is 12 h/sin A) ,  are a characteristic 
feature of current measurements in the ocean. The most striking aspect of such 
currents is their transience. The oscillations are highly intermittent, in many cases 
persisting for only a few c j  cles (see Webster 1968, for example). It is probable that in 
many instances inertial oscillations are initiated by fluctuations in the wind stress via 
geostrophic adjustment pr0cesses.t This generation mechanism has been studied by 
several authors, including Pollard (1970), Gonella (1971) and Krauss (1972), and com- 
parisons between theory and observation are generally quite good (Pollard & Millard 
1970; Kundu 1976). Although the generation of inertial oscillations would thus appear 
to be fairly well understood, the same is not true of t,heir dissipation. To date, no 
satisfactory explanation of the observed transience of inertial oscillations has been 
proposed (see Smith 1973). 

7 Blumen ( 1  972) has made a comprehensive review of geostrophic adjustment processes. 
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Wind-stress forcing as a generation process is restricted for the most part to  the 
wind-mixed layer below the ocean surface. Although in due course some of the near- 
inertial energy leaks into the underlying ocean layers as a result of the propagation 
characteristics of inertial-gravity waves (Kroll1975), this is a relatively slow process. 
The bulk of the available observational evidence (see, for example, Webster 1968; 
Pollard 1970; Pollard &Millard 1970; Gonella 1971; Pollard, Rhines &Thompson 1973; 
Halpern 1974; Hayes & Halpern 1976) indicates that  for the most part wind-generated 
inertial oscillations are slab-like, advecting the wind-mixed layer as a whole, with 
little direct influence on the motion of the underlying ocean layers. However, because 
the mixed layer is turbulent, an indirect coupling may exist between near-surface 
inertial oscillations and higher frequency internal gravity wave motions in the under- 
lying ocean layers. Lumps and bumps in the base of the mixed layer associated with the 
turbulent eddies are advected by the inertial oscillations and residual turbulent 
motions and disturb the underlying stratified ocean layers, resulting in the generation 
of internal gravity waves. The wave field radiates momentum and energy from the 
mixed layer. The energy flux is related to  the rate of working against normal and 
tangential forces associated with the interaction of turbulent eddies with the stratified 
region below. The normal forces relate to the time-dependent nature of the turbulence, 
while the tangential forces relate to  the advection of the lumps and bumps by the 
inertial oscillations and by other turbulent eddies. If the magnitude of the inertial 
current is large compared with the turbulence intensity, as is usually the case, then 
most of the radiated energy will be derived from the inertial oscillations. I n  the analysis 
which follows, we investigate internal wave radiation from the mixed layer and its 
relationship to near-surface inertial oscillations. The results reported here indicate 
that, for representative oceanic conditions, internal wave radiation may account for 
the observed transience of near-surface inertial oscillations. 

The theory of internal wave radiation from a turbulent layer has been considered 
by several authors, including Townsend (1965, 1966, 1968), Tolstoy (1973) and Tolstoy 
& Miller (1975). Although application of the existing theory has been restricted to  
meteorological contexts, the authors have noted that analogous phenomena may occur 
in the ocean, and that elements of the theory may be applicable in the oceanic case. 
However, owing to  peculiarities in the oceanic system, the theory developed in these 
earlier studies must be modified and extended for oceanic application. Whereas the 
earlier theories apply to  a situation in which relative motions between the turbulent 
and non-turbulent layers are steady, relative motions between the surface mixed layer 
and the underlying upper ocean layers are time dependent, being associated with the 
wind-driven inertial oscillations. Thus we are led t o  consider the problem of internal 
wave radiation from a turbulent layer which is advected by a current whose com- 
ponents vary harmonically in time. The resultant modifications to the existing theory 
are similar to those which arise in the extension of classical lee-wave theory to oscil- 
latory flows (see Bell 1975a, b ) .  Owing to  the disparity between the inertial frequency 
and other natural frequencies of the system, it turns out that  a quasi-steady approxi- 
mation is valid. The general solution for time-dependent currents is shown to reduce 
in the limit f -+ 0 to  that  which would be obtained by considering wave generation with 
a steady advection currenb and then averaging over all possible current directions. 
Hence we could start with Townsend’s (1968, equation 2.14) result, average over all 
possible current directions, then apply the result to the problem a t  h a d .  However, 
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since the general theory for harmonic currents is interesting in its own right, we 
develop the general theory then pass to  the quasi-steady limit. 

The fundamental theory is developed in 52. We adopt Townsend’s approach, 
representing the effect of the mixed-layer turbulence by vertical displacements of the 
base ofthe mixed layer. The theory is developed for a uniformly stratified, bottomless 
ocean, thereby isolating the essential physics of the problem. With regard to  oceano- 
graphic applications, it is readily shown that if the first-mode, long-wave speed 
appropriate to  the real ocean is large compared with the magnitude of the inertial 
currents then this semi-infinite approximation is in fact valid, a t  least in so far as the 
energetics are concerned. I n  0 3, we explore the characteristics of advected-mixed- 
layer turbulence and introduce some simplifications into the theoretical results. The 
question of Kelvin-Helmholtz instability a t  the base ofthe mixed layer is not addressed 
directly. This is not to  say that structures resulting from such instabilities cannot or 
will not exist. However, available information indicates that  the dominant (at least 
observationally) structures are elongated vortices which are aligned more or less 
parallel to the prevailing wind direction, rather than exhibiting any preferred orienta- 
tion with respect to the direction ofthe shear a t  the base ofthe mixed layer, which will 
vary depending on the phase of the inertial oscillation. The theory is developed with 
this observation in mind. I n  5 4, we consider the radiative damping of near-surface 
inertial oscillations. Significant simplifications are obtained by taking advantage of 
certain properties of the turbulence and disparities in length and time scales, and we 
are able to obtain simple asymptotic expressions for the major theoretical results in 
terms of integral properties of the turbulence. Some properties ofthe radiated internal 
wave field are considered in 3 5. The significance of the analytical results is discussed 
briefly in 5 6. Precise evaluation of the theory is somewhat hindered by our imprecise 
knowledge of some of the properties of mixed-layer turbulence. However, it would 
appear that, for representative oceanic conditions, we may expect an energy flux of 
1-10 erg/cm2 s into relatively short (wavelength of order several hundred metres 
or less), high frequency (of the order of, but less than, the Brunt-Viiisiila frequency) 
internal waves. Since the bulk ofthis energy is derived from the inertial oscillations, we 
estimate decay times for the magnitude of the inertial currents ranging from a day to 
a week or so, in agreement with reported observations. Furthermore, our estimate of 
the energy flux is comparable in magnitude t o  estimates for other generation 
mechanisms (reviewed by Miiller & Olbers 1975), indicating that, in addition to being 
a significant sink of inertial energy, this process may locally represent a significant 
source of internal wave energy in the open ocean. 

2. Internal wave generation 
Consider a region of uniformly stratified fluid underlying a turbulent mixed layer. 

With the effects of rotation included, small amplitude internal gravity waves in the 
lower, stratified layer are governed by the equation 

(D2 + N 2 )  V2r + (D2 + f 2, rz2 = 0, (2.1) 

where 11 is the vertical displacement amplitude of the wave motion, D = a/&, 
v2 = a2/a x2 + a2/ay2, f is the local inertial frequency (Coriolis parameter) and N is the 



292 T .  H .  Bell 

Brunt-Vaisala frequency, defined in terms of the vertical density gradient by 

where g is the acceleration due to  gravity. I n  modelling the effect of the turbulent 
mixed layer on the stratified region, we follow the approach developed by Phillips 
(1955) for determining the irrotational motion outside a free turbulent boundary and 
later extended by Townsend ( 1  965, 1966, 1968) to  include the effects of stratification. 
The effect of the turbulence is modelled by a random displacement of the base of the 
mixed layer, which serves to  force the internal wave motion in the stratified region 
below. 

Considering first an isolated disturbance, the boundary conditions to be imposed on 
the governing equation (2.1) are that 4 be Fourier transformable in x ,  y and t and that 

r ( x ,  y, 0, t )  = a x ,  y, t), (2.3) 

where z = 0 a t  the base of the mixed layer and [ (x ,  y, t )  is the turbulent displacement 
of the base of the mixed layer. The solution is rendered determinate by a condition of 
downward radiation of wave energy. This is the lower boundary condition appro- 
priate to a uniformly stratified, bottomless ocean. No internal wave energy is reflected 
back up towards the mixed layer. The opposite extreme is the waveguide model ocean, 
in which internal wave energy is trapped by a region of strong stratification or by the 
effect of a rigid boundary. The real ocean is a waveguide, although dissipative processes 
may make it appear radiative in so far as certain generation mechanisms are concerned. 
However, it can be shown that, if the limiting phase speed of trapped internal wave 
modes is large compared with the magnitude of the inertial currents advecting the 
mixed layer, then the radiative solution will yield a good approximation for the flux 
of energy into the internal wave field. This point is illustrated in figure 1 ,  where the 
ratio of the energy flux in a uniformly stratified waveguide model (gW) t o  that  in a 
radiative model (SR) is shown as a function of the ratio of the limiting phase speed for 
guided waves (C,) t o  the magnitude of the inertial oscillation (U,). For C,/U, < 1 ,  the 
waveguide flow is supercritical, and the efficiency of internal wave generation is 
decreased. The peaks a t  integral values of C,/U, correspond to the limiting phase 
speeds of the respective waveguide modes and represent tuned responses to the forcing 
with speed U, = C,/n. As the flow becomes more and more subcritical (C,/U,increasing), 
the efficiency of internal wave generation of the waveguide approaches that of the 
semi-infinite ocean. Garrett & Munk ( 1  972) give dispersion relations for a model ocean. 
The limiting phase speed in their model is 2.3 m/s. Assuming that this is representative 
of the real ocean, it is clear that, for inertial currents of less than a metre per second or 
so, the radiative approximation should be adequate. 

Introducing the Fourier transform 

~ ( x ,  y, z ,  t )  exp [ - ~ ( K X  + hy - w t ) ]  dx dy dt (2.4) 

reduces the governing equation (2.1) to 
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FIGURE 1. Ratio of internal wave energy flux in waveguide model (Fw) to that in radiative 
model (9~) as a function of the ratio of the limiting phase speed for guided waves (C,) to  the 
magnitude of inertial oscillation (Uo).  In the ocean, C,/Uo may typically be of order 10. 

where k2 = K~ + A2 and the primes denote derivatives with respect to z .  The solution 
satisfying the upper boundary condition (2.3) is 

where 

q ( ~ ,  A, w ;  z )  = c(z, A, w )  e i p z ,  

p2 = k2(N2  - w 2 ) / ( w 2  - f 2 ) .  

There are two parameter regimes for the solution. Iff < w2 < N 2 ,  ,u is real and the 
solution (2.6) is oscillatory in z ,  corresponding to internal wave motions. Otherwise, 
,u is imaginary and the solution is monotonic in z.  In this evanescent regime, the choice 

ensures the appropriate decay away from the generation region. In the oscillatory 
regime, the radiation condition requires that the vertical component 

y = a w p p  (2.9) 

of the group velocity be negative, corresponding to downward propagation of wave 
energy. From (2.7), 

(2.10) 

which is negative if sgnp = sgn w .  Thus, in the internal wave regime, the choice 

(2.11) 
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renders the solution determinate. The complete solution is given by the inverse 
transform 

where C(x, y, t )  exp [ - ~ ( K X  + h y  - ot)] d z d y d t  (2.13) 
-03 

is the Fourier transform of the vertical displacement associated with the disturbance 
at  the base of the mixed layer. 

Mixed-layer turbulence, of course, is not an isolated disturbance. It is more properly 
represented as a stationary random process, hence so is the radiated wave field. Since 
we are dealing with linear theory, the appropriate solution entails second-moment 
(spectral) representations of the turbulence and the wave field. This could be accom- 
plished by superposing the effects of an appropriate random distribution of isolated 
disturbances. Alternatively, we may simply note that the solution (2.12) represents 
a linear transformation of the disturbance, 80 that its spectral function is related to 
that of the disturbance by 

fi,k A, w ;  2 )  = Q K ,  A, w )  exp [i (P -p* )  21, (2.14) 

where ,u* is thecomplex conjugate ofp, and the spectral functions 8, andaCare Fourier 
transforms of correlation functions. In  particular, 

&(K,  A, w )  = //I R&z, y, t )  exp [ - i ( ~ x  + hy - wt)]  d x d y d t ,  (2.15) 

where R&' y, t )  = (tS(O,O, 0) [(x, y, t ) )  (2.16) 

is the correlation function which characterizes the turbulence-induced displacements 
of the base of the mixed layer. The energy density in the radiated wave field may be 
expressed in terms of the spectral function 8,. In the internal wave regime, p is real, 
so that fi,, = RC. The mean-square vertical displacement in the wave field is then 

03 

-03 

(2.17) 

where the integral extends over all wavenumbers and all frequencies such that 
f 2 < w2 < N2. The potential energy density is then &po N 2  (q2).  Invoking the appro- 
priate partition of energy for internal inertial-gravity waves (see Fofonoff 1969), the 
total energy density in the radiated wave field is 

(2.18) 

The flux of energy into the internal wave field is obtained by multiplying the spectral 
function BC in (2.18) by the magnitude of the group velocity given by (2.9) and (2.10): 

$-  Po J'"' - [ ( N 2 - w 2 ) ( ~ 2 - f 2 ) ] * f i C ( ~ , h ,  w ) d ~ d h d w .  (2.19) 

The results (2.18) and (2.19) characterize the internal wave generation process. We 
may recover Townsend's (1968, equation 2.14) result from the energy flux due to 

(243 k 
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internal wave generation by a turbulent boundary layer in a stratified atmosphere by 
setting f = 0 and approximating the spectral function Ac by the form 

B, = 2 ~ f f ~ ( ~ , A ) & ( ~ - k .  U), (2.20) 

where U is a constant advection velocity, so that (2.20) represents a steady disturbance 
field which is advected relative to the stratified layer at  a constant speed. 

3. Advected-mixed-layer turbulence 
If the mixed layer is moving relative to the underlying upper ocean layers, the effect 

of advection must be incorporated in the disturbance correlation function R&x, y ,  t ) .  
Townsend and others have considered the case of steady advection. Here we extend 
the theory to a class of time-dependent motions. For general time-dependent motion, 
the disturbance correlation function may be expressed in the form 

R&X,y,t) = RCo X -  U d t , y -  Vd t , t  , ( 1  s 1 
where U(t )  and V ( t )  are the x and y components of a general time-dependent near- 
surface current and Rs0(x, y ,  t )  is the correlation function seen by an observer moving 

. with the mixed layer, i.e. the ‘pure turbulence’ correlation function. The spectral 
function is then given by 

&K,  A, w )  = s/sy Rco(x,y, t )  exp {- ~ [ K x +  Ay - cr(t)]}dzdydt, (3.2) 
- - W  

where a( t )= W ~ - K  U d t - h  Vd t .  s s  (3.3) 

For pure inertial oscillations, 

U(t )  = U,cos(ft+a), V ( t )  = Uosin(ft+a), (3.4) 

where a is an arbitrary phase. Substituting into (3.3), we have 

kUosin (4- a )  -- kU0 sin ( f t  +a - $1, 
f 

cr(t) = wt-- s 
where we have set K = kcos$, h = ksin$. 

Invoking the Neumann expansion 

W 

n = - w  
exp(--Zfsin(ft+a-$) . kU, = 2 exp[-in(ft+a-$)]J, 

where the J, are Bessel functions (Watson 1966, §2.22), we may substitute into (3.2) 
and obtain 

m 

(3.8) 

A 

R 5 ( ~ ,  A, w )  = exp exp [in($ -a)]  f i g 0 ( ~ ,  A,  w - nf ), 

where now 

Rc0(z, y, t )  exp [ - ~ ( K X  + h y  - wt)] dxdydt (3.9) 
-a 
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is the spectral function for the turbulence displacement field. Averaging over phase, 
we finally obtain the expression 

(3.10) 

for the spectral function which drives the wave motion (see Watson 1966, $2.2). 
Substitution of (3.10) into (2.19) yields the expression 

for the energy flux. As in the earlier studies of wave generation by oscillatory flows 
(Bell 1975a, b ) ,  the generation process samples all the sum and difference frequencies 
(w i- nf ). The sum in (3.1 1 )  is readily transformed to an integral by noting that 

c W J: (7) einft = J, ( 2kU0 sin:) 
n= - w  

(3.12) 

(Oberhettinger 1973, equation 4.29). Then, with 

we have 

Appreciable contributions to the integral are restricted to t 5 0, where 0 is the integral 
time scale of the turbulence. With 0f 4 1,  we then have 

W 

C J:  2 RCO(K,h,w-nf)  - 1 ~CO(K,h, t )J , (kU, t )e - i" td t .  (3.15) 

By the convolution theorem, the integral in (3.15) corresponds to a smoothing of the 
spectrum R c O ( ~ ,  A, w ) .  Invoking the integral representation for Jo, 

r.3 - W  

m 

n = - w  

(3.16) 

(Watson 1966, §2.2), we have 

f ; j cO(~ ,h , t )J , (kU,  t )e- iwtdt  = - RC0(~,h,w-kUocos$6)d$6.  (3.17) 

The sum in (3.1 1) has thus been transformed to a simple spectral smoothing operation: 

(3.18) 

f", n o  'I' * 
d - - k-lw2(N2 - W 2 ) t  f i c o ( K ,  h, w - kUo cos $6) d$6 do  dKdh, 

where we have replaced w 2 -  f with w2, consistent with the limit 0f 4 1. 
Observational evidence relating to mixed-layer dynamics (McLeish 1968; Faller 

197 1 ,  for example) indicates that  the more energetic eddies of mixed-layer turbulence 
(the so-called Langmuir circulations) tend to be rather elongated, with large length- 
to-width aspect ratios, and that these features are rather persistent, having lifetimes 

r- 8774 
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 FIGURE'^. The response function d as a function of /J’ = kU,,/N [see (3.21), (3.22)]. The wave- 
making response is maximal for wavenumbers slightly less than N/U, ,  corresponding to 
frequencies somewhat less than N in a stationary reference frame. 

significantly greater than the characteristic time scale Elu’, where 1 is a characteristic 
length scale and u’ a characteristic velocity scale for the eddies. Representative values 
of 1 and u’ may be taken as several metres and several centimetres per second, 
respectively (see 3 4 below), so that u‘ll is characteristically of order 10-2s-1. This is 
of comparable order to typical upper-ocean Brunt-Vaisala frequencies. Thus, if 8 is 
the characteristic eddy persistence time, then we may evaluate the energy flux in the 
asymptotic limit NO B 1. I n  this case, the frequency bandwidth of fi,, is small com- 
pared with N, and we have that 

271 L ~ W ~ ( N ~ - - W ~ ) & & ~ ~ ( K ,  h, W -  kUocos#)dw - k2Utcosz#(N2- k2U;cos2#)&fio(K, A ) ,  

(3.19) 

where (3.20) 

is the Fourier transform of the spatial correlation of the turbulent displacement field. 
The energy flux may then be represented in the form 

where the response function A^(kUo/N) is given by 

(3.21) 

(3.22) 

with #o = &r for kU, < N and sin$, = N/kUo otherwise. It may readily be verified 
that this result is identical with that which would be obtained by considering wave 
generation with a steady advection current and then averaging over all possible 
current directions. The response function is plotted vs. p = kU,/N in figure 2. The 
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response is maximal for wavenumbers slightly less than N/Uo,  corresponding to wave 
frequencies in a stationary reference frame somewhat less than the Brun&Vaisala 
frequency. 

Further simplification may be introduced by invoking the elongated nature of the 
eddies. In  this case, we may express the spectral function f i o ( ~ ,  A )  in the form 

fig@, A )  x 27r f iO(K)  S ( A )  (3.23) 

for purposes of estimating the energy flux. Since the rotary currents sample all 
directions within an inertial period, we incur no loss of generality by assuming that the 
long axes of the turbulent eddies are aligned in the y direction. With the spectral 
function given by (3.23), our expression for the energy flux becomes 

with A(KU,/N) given by (3.22). 

(3.24) 

4. Radiation damping 
The energy in the internal wave field is a direct result of work done by motions 

within the mixed layer against buoyancy forces which arise owing to the density 
stratification in the underlying upper ocean layers. The rate of working per unit 
surface area is given by 

1 
W = -  u . n p d a ,  (4-1) s ss 

where u is the velocity field at the base of the mixed layer, n is a unit normal to the 
surface which defines the base of the mixed layer, and p is the pressure perturbation 
induced by the internal wave field at the base of the mixed layer. The integral extends 
over an area S.  If [(x, y, t )  is the vertical displacement of the base of the mixed layer 
from its equilibrium level z = 0, then the normal component of velocity u . n is given by 

u .  n = - .gt/(g: +[: + I)$. (4.2) 

Consistent with the linearization in $ 3  above, the denominator in (4.2) may be set 
equal to 1,  and (4.1) may be evaluated at z = 0, the mean position of the base of the 
mixed layer. For stationary random functions, the integral in (4.1) acts as an ensemble 
average, so that 

W = - (Ct P), (4.3) 

where the angular brackets denote an ensemble average. For small amplitude motions, 
the perturbation pressure field is related to the displacement amplitude of the internal 
wave field by 

(4.4) 

Invoking the fundamentaI solution (2.12), we then obtain the formal result 

@(K, A ,  w )  = i sgn ( w )  IC-1 [ ( ~ 2 - -  w2) ( d - f z ) ] *  ( ( K ,  A, w ) ,  (4.5) 

where a caret denotes Fourier transformation, as before, and we need consider only 
the internal wave regime f 2  < w2 < N 2 .  The right-hand side of (4.3) may then be 
expressed in the form 
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where the integral extends over all wavenumbers and frequencies such that 

f a  < ua < N2,  

and fif is the spectral function for the displacement field. Comparison of (2.19) and 
(4.6) indicates that the rate at which energy is radiated away by internal waves is 
equal to the rate of working by mixed-layer motions, as expected. 

Work is done by both the mean (U) and the turbulent (u‘) motions and represents 
a loss of energy by such motions. The energy lost by mixed-layer motions is, of course, 
gained by the internal wave field. We may partition the energy loss between mean and 
turbulent motions by invoking the conservation of momentum in the mixed layer. 
Neglecting internal dissipation and external forcing, this principle leads directly to the 
equations of mean motion 

where D is the mixed-layer depth (note that the mean motion is assumed to be hori- 
zontally uniform). Forming an energy equation from (4.7), we then have 

aElat = - U W x ) -  V(PCU), (4.8) 

where E = &po D( U2  + V 2 )  (4.9) 

is the inertial oscillation energy per unit surface area. In a similar manner, we may 
obtain an energy balance for the mixed-layer turbulence: 

aEt/at = (w‘P) - (qX p> - (v’tly p ) .  (4.10) 

If (4.8) and (4.10) are added together, the left-hand side of the resulting equation is 
equal and opposite to the rate of working by mixed-layer motions, while the right-hand 
sides combine to form ( & p ) .  If the terms on the right-hand side of (4.10) are small 
compared with ( & p ) ,  then we may make the approximation 

(4.1 1) 

which is equivalent to saying that the bulk of the internal wave energy is a result of the 
work done by the inertial oscillations, rather than the turbulence itself. In general, 
d / U <  1, i.e. the turbulence intensity is small compared with the magnitude of the 
inertial currents, and we may neglect the triple correlations in (4.10) compared with 
the terms in (4.8). In effect, a large velocity does proportionately more work against 
a given force than a small one. In  so far as the (w’p) correlation is concerned, the 
arguments concerning eddy persistence in 3 3 above indicate that the dominant 
contribution to Ct is U . VC, so that w‘ is characteristically small compared with &. Thus, 
ifu’/U is small, the approximation (4.1 1) should be valid. It is readily verified that this 
conclusion remains valid even if the eddy persistence time is of order l/u’. 

Equation (4.1 1 ) describes the radiation damping of near-surface inertial oscillations. 
To order u’/U, the rate of decay of the energy of inertial oscillation is equal to the 
internal wave energy flux. In $32 and 3 above, we have derived expressions for the 
energy flux in terms of sensible parameters which characterize the upper ocean layer 
and the spatial structure of the mixed-layer turbulence. The theory is strictly valid 

aE/at M ( & p )  = -s, 
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only when the amplitude of the inertial oscillation does not vary with time. However, 
if the characteristic time scale for the wave generation process is small compared with 
the decay time of the inertial oscillations, then the theory should prove adequate for 
estimating the decay time. In  fact, there are two characteristic times involved in the 
generation process. The form of the transfer function A in (3.24) indicates that the 
wave-making response is maximized for frequencies of the order of, but somewhat less 
than, the Brunt-Vaisala frequency (see figure 2 and discussion). Hence we have one 
characteristic time scale for the generation process which is of order N-l .  A necessary, 
but not sufficient, condition for the validity of the theory is then that the decay time be 
large compared with N-l .  As will be seen, this is normally the case for oceanic applica- 
tions. However, in deriving manageable expressions for the energy flux, we were 
forced to  average over the phase of the inertial oscillation. If the decay time is large 
compared with the inertial period, then this averaging procedure is consistent with a 
slowly decaying inertial oscillation. If, on the other hand, the decay time is not large 
compared with the inertial period, then we may expect that  the decay rate will depend 
on the initial phase of the inertial oscillation relative to any preferred orientation ofthe 
turbulent eddies. I n  this case, decay rates predicted using the theory presented here 
must be interpreted as averages for an ensemble of inertial oscillations, rather than as 
applying to any individual inertial oscillation. 

The evolution equation for the ensemble-average amplitude of the inertial oscilla- 
tions follows directly from (4.11) with 9 given by (3.24): 

where 

(4.12) 

(4.13) 

with #,, = QT for K U ~  < N and sin rj0 = N/KUo otherwise. a 0 ( ~ )  is the spectral function 
for turbulent displacements of the base of the mixed layer. Equation (4.12) cannot be 
solved without specifying the spectral function f io(x),  which cannot be done at this 
time owing to  a lack of relevant data. However, approximate results can be obtained 
in certain parameter regimes of interest by invoking appropriate asymptotic approxi- 
mations. Even an asymptotic evaluation depends to some extent on gross features of 
the shape of the spectrum, or equivalently the correlation function. We assume that 
the mixed-layer turbulence is broad-band, i.e. is characterized by a more or less 
monotonic correlation function, with appreciable correlations restricted to x < 1, 
where 1 is the integral scale defined by 

(4.14) 

where (fig) is the mean-square displacement of the base of the mixed layer. Although 
data on the structure of mixed-layer turbulence are limited, it is possible t o  make 
order-of-magnitude estimates of the parameters C0 and 1. Data from rapid CTD 
profiling through the mixed layer presented by Pollard (1974) show displacements 
go M 10-10 for mixed-layer depths D of 20-30m. Precise evaluation of the integral 
scale 1 is difficult at best, since spectra of oceanographic variables are characteristically 
red, with contributions from scales ranging from hundreds or thousands of kilometres 
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down to centimetres. However, since the mixed-layer turbulence is confined within a 
depth D, we may expect some limitation on the relevant turbulence scales. Indeed, if 
the mixed-layer turbulence extracts any significant amount of its energy from the 
mean flow, then we may expect that scales smaller than the mixed-layer depth will 
dominate the spectrum. In this regard, we note that Dillon & Powell (1976) report 
mixed-layer turbulence spectra from Lake Tahoe which consistently show a levelling- 
off of the spectrum for wavelengths greater than about one or two times the mixed- 
layer depth, i.e. for KD less than about 7~ or 277. We might also note that observations 
of Langmuir cells reviewed by Faller (1 971) and Assaf, Gerard & Gordon ( 197 1 )  indicate 
a characteristic cell spacing roughly equal to the mixed-layer depth. McLeish (1968) 
suggests that this corresponds to the wavelength characterizing the large eddies of 
mixed-layer turbulence. All of this evidence tends to suggest that the relevant integral 
scale is somewhat less than the mixed-layer depth. Indeed, Nihoul (1972) argues on 
energetics grounds that I should be of the order of IO-lD, and Niiler (1977),  in his 
review of numerical modelling of the mixed layer, implies that the range 

0.030 < 1 < 0.30 

may be appropriate. We shall choose 1 z D/2n as representative. 
By invoking Parseval's relation, (4 .12)  may be transformed to 

where Ro(x) is the correlation function and 

(4 .15)  

(4.16) 

For representative conditions ( N  N 10-2s-1, D - 25m, Uo N 30cm/s), we have 
Nl/Uo z 0.13. Since appreciable correlations are restricted to x < I, we may replace 
the transfer function A ( N x / U o )  by its limiting form for small argument. A ( N x / U , )  
and A^(KU,/N) are a Fourier transform pair, so that the behaviour of A ( N x / U , )  for 
small NxIU, is related to the asymptotic behaviour of A^(xU,/N) for large KU,/N 

A^(P) - @ID2) A'(% (4.17)  
according to 

a result which is established by successive partial integrations (see Copson 1967, $10). 
From (3.22) we also have, for P -+ 00, 

Noting that 

(4.18) 

(4.19) 

we may combine the results and evaluate terms in the Taylor-series expansion of 

N x  
A(Nx/Uo):  

A ( N x / U o )  = 

(4.20) 
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Again, appreciable correlations are restricted to x < 1, so that 

Iom xR,(x) ax 2 1 1 ;  R,(x) ax. 

Substituting the expansion (4.20) into (2.15)) we thus obtain the result 

(4.21) 

(4.22) 

for the evolution of the ensemble-average amplitude of the inertial oscillations. 

by its equivalent rectangular spectrum 
Results valid for all Nl/U, may be obtained if we approximate the spectrum B,(K) 

In this case, the evolution equation (4.12) 

for 1.1 < 27/21, 

IKI > 27/21. 

becomes 

(4.23) 

(4.24) 

where $, = &r for ATl/Uo > 827 and sin$, = 2Nl/nUo for NIIU, < 427. By introducing 

z = (C$>Nt/lD (4.25) a scaled, non-dimensional time 

and velocity 0 = &lU,/Nl (4.26) 

(2.24) may be written in the form 

(4.27) 

The quantity S( 0) = - 0-1 dU/dt (4.28) 

is a non-dimensional decay rate for the ensemble-average amplitude of the inertial 
oscillations. In  a time interval St, 0 will decrease by a fraction SSt. For 0 9 1) 
sin4 M 4 and we have 

(4.29) 

It is readily verified that this result may also be obtained directly from (4.15) with 
A(Nx/U,) given by (4.20), provided that the integral of xR,(x) is treated in the sense of 
generalized functions (see Lighthill 1964, $3.2). For arbitrary 0, the integral in (4.27) 
may be evaluated in terms of tabulated elliptic integrals. It should be noted, however, 
that with N M 10-2 8-1 and D x 25 m, 0 = 1 corresponds to a velocity U, w 2.5 cm/s, 
which is likely to be comparable to the turbulence intensity u'. Since the theory 
developed above is strictly valid only for Uo/u' 9 1, the behaviour of the decay rate 
for 0 the order of, or less than, unity is irrelevant for oceanographic applications. 

The non-dimensional decay rate S( 0) for the equivalent rectangular spectrum is 
illustrated as a function of 0 in figure 3. Also shown is the asymptotic approximation 
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FIGURE 3. The non-dimensional decay rate S for radiation damping of inertial oscillations EIB 8 

function of the non-dimensional amplitude 0 of the motions [see (4.36)-(4.39)]. -, exact 
result for equivalent rectangular spectrum : -- , approximate result given by (4.40); ---, 
leading term for large 0. Corresponding dimensional time scale is indicated on right-hand side, 
under the assumption that N x s-l. 

(4.29) and its leading term. For 0 > 1, the leading term in (4.29) is within a factor of 
two of the exact result, and is virtually indistinguishable from it by the time 0 is near 
10. The corresponding dimensional time scale is indicated on the right of figure 3 under 
the assumption that c0 z lO-lD, E w D/2n and N = 10-2s-1. For velocities U, ranging 
from 10 to 50cm/s, with N = 10-2s-' and D = 25m, the relevant time scales range 
from just under a day to about two weeks, which is consistent with the observed range 
of time scales characterizing the decay of near-surface inertial oscillations (see, for 
example, Webster 1968; Pollard & Millard 1970; Gonella 1971 ; Halpern 1974; Hayes & 
Halpern 1976). 

5. The internal wave field 
From (4.1 1) and (4.22), the flux of energy into the internal wave field is given by 
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for U, & N1, where N is the Brunt-Vaisala frequency, 1 is the integral scale of the 
mixed-layer turbulence, go is the r.m.8. turbulent displacement of the base of the mixed 
layer, and U, is the magnitude of the inertial oscillation. For reasons noted in the 
preceding section, we may expect that in general the leading term in (5.1) will provide 
a viable approximation to the energy flux provided that U, Y 5 cm/s. If we assume, as 
before, that  go M 10-lD and 1 M D/2.rr, where D is the mixed-layer depth, then for 
representative conditions ( N  M 10-2s-1, D M 25m) (5.1) gives 9 z 5erg/cm2s. The 
magnitude of this energy flux suggests that this mechanism may represent a significant 
source of internal wave energy in the upper ocean, since, according to Muller & Olbers 
(1975), any internal wave energy-transfer rates of order 1erg/cm2s or larger are 
potentially significant in the overall internal wave energy budget. Since the inertial 
oscillations are intermittent, internal wave energy is not necessarily being continuously 
generated a t  this rate. In  figure 4, we have plotted a sample probability distribution 
function of U, on logarithmic probability paper, using data on the inertial period 
amplitude of near-surface currents from Webster (1968), Pollard & Millard (1970) and 
Halpern (1974). If we assume that these data are representative, then U, is above a 
threshold of 5 cm/s about 75 yo of the time, so that a long-term average energy flux of 
about 4 erg/cm2 s might be considered as representative. This is still potentially 
significant in so far as the overall internal wave energy budget is concerned. The theory 
developed here is incapable of adequately describing the internal wave generation 
process for U, 2 5cm/s, although we may infer that internal waves are still being 
generated a t  the lower speeds. Indeed, it is possible that continuous low-level forcing 
by the residual currents (including the turbulent motions thermselves) may also be 
significant. 

Some idea of the distribution of internal wave energy in wavenumber-frequency 
space may be obtained from consideration of equation (2.18) for the energy density. 
With the turbulence correlation function specified by (3.10), (3.11) and (3.23), the 
spectral function for the internal wave energy density is given by 

The singularity a t  w = f is somewhat artificial. Since the vertical group velocity [see 
(2.9)] vanishes a t  the inertial frequency, energy a t  w = f would never be seen a t  an 
observation point below the mixed layer. Indeed, since we are dealing with an inter- 
mittent phenomenon, the group velocity is an important factor to be borne in mind 
when considering the energy density. From (2.10) and (2.1 l ) ,  the magnitude of the 
vertical group velocity is given by 

I y I approaches zero as w approaches f or N ,  and is maximal for 

w; = QN2{1 + (1 + 3f 2/N2)t). (5.4) 

For N2 9 f 2, w, = k (5 ) :N .  At any finite time after the onset of internal wave genera- 
tion, the observed wave field will cover a band of frequencies more or less centred 
about w,. At any given depth below the mixed layer, the first waves to be observed will 
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U, (cmis) 
FIGURE 4. Probability distribution of U,, from published data 

(Webster 1968; Pollard & Millard 1970; Halpern 1974). 

be of frequency wo and, with the passage of time, the observed range of frequencies will 
spread out towards f and N .  In so far as the wavenumber is concerned, the longest 
waves travel fastest, and will be the first to arrive a t  the observation point. The group 
velocity is also important in that the slower-moving waves are more likely to be altered 
during propagation over a given vertical distance than the faster waves. The energy in 
the slower waves may be transferred to other spectral ranges by nonlinear interactions. 
Also, the slower waves have proportionately smaller vertical scales and are more 
susceptible to scattering by fine structure in the background density and velocity fields 
than are the faster waves. 

Referring back to (5.2), if we 'smear' the &function, the energy spectrum is given by 

(5 .5 )  

for w $ f ,  consistent with the arguments concerning the group velocity. The smeared 
S-function is probably more realistic than (5.2) in that it allows for some random time 
dependence in the turbulence, and is appropriate to high frequency waves. Recalling 
(3.13), it is clear that  the dominant contribution to  the spectrum as defined by (5.5) 
will occur for w x K U ~  when w $ f, provided that f i o ( ~ )  is reasonably well behaved. In  
the present context, f i o ( ~ )  may be considered well behaved if K 2 I-', where 1 is the 

I1 F L M  88 
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integral scale of the turbulence. Thus we expect that the radiated wave field will be 
characterized by relatively high frequencies (of the order of, but somewhat less than, 
the Brunt-Vaisala frequency) and short wavelengths (of the order of 2nU0/N, which 
may be as large as several hundred metres). The amplitude of the waves will be com- 
parable to the amplitude of the vertical displacement of the base of the mixed layer, 
which, as noted previously, may be several metres. 

6. Discussion 
We have considered the generation of internal waves by the interaction of mixed- 

layer turbulence advected by near-surface inertial oscillations with the underlying 
stratified upper ocean layers. Using an idealized model, which, we hope, retains the 
essential physics of the interaction process, we have been able to obtain rather simple 
expressions for the rate of generation of internal wave energy and the characteristic 
time scale for the decay of energy in near-surface inertial oscillations. For repre- 
sentative conditions ( N  z 10-2s-1, mixed-layer depth D z 25m, current magnitude 
U, z 25 cm/s), we estimate an energy flux of 3 erg/cm2 s into the internal wave field, 
resulting in a characteristic time scale of about 3.4 days for the decay of the inertial 
current speed (twice the energy decay time scale). Since the precise values of the 
parameters are somewhat uncertain, it is probably more appropriate to extend these 
estimates to probable ranges, to wit, 1-10erg/cm2s for the energy flux and a fraction 
of a day to several days for the energy decay time scale. 

Although these are only order-of-magnitude estimates, they do suggest two im- 
portant conclusions. First, it would appear that this mechanism is capable of accounting 
for the observed transience of near-surface inertial oscillations and, second, this may 
represent a significant source of internal wave energy in the upper ocean, since 
according to Miiller & Olbers (1975) any internal wave energy-transfer rates of order 
1 erg/cm2 s or larger are potentially significant in the overall internal wave energy 
budget. The identification of this mechanism as a viable agent for inertial oscillation 
transience rectifies a longstanding gap in our understanding of the dynamics of inertial 
oscillations (see Smith 1973). In  so far as internal wave energetics are concerned, this 
mechanism is of particular interest in that the generated waves will characteristically 
be of rather high frequency (a significant fraction of the Brunt-Vaisala frequency), and 
will tend to be intermittent, just as the inertial oscillations from which they derive 
their energy are. Intermittent groups of high frequency internal waves are charac- 
teristic of the upper ocean in general. 

Owing to a lack of detailed information on the structure of mixed-layer turbulence, 
we have been forced to adopt an idealized model and resort to asymptotic evaluation 
techniques. It should be possible, however, to conduct definitive experiments to test 
the validity of the theory. A Conclusive experiment should involve three components. 
First, a towed thermistor chain extending through the mixed layer should provide the 
required estimates of the r.m.s. displacement 5, and the integral scale 1. Second, CTD 
profiles would permit the specification of the appropriate Brunt-Vaisala frequency N ,  
as well as providing supplementary information on 5, and, of course, specifying the 
mixed-layer depth D. Finally, moored current meters within and below the mixed 
layer would provide the necessary information on the relative motion between the 
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mixed layer and the underlying ocean layers. A measurement programme incorporating 
these components would go far in verifying the theory presented here, and it is 
believed that the potential significance of the results reported here justify the under- 
taking of such an experiment. 
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